Monte Carlo Integration With Acceptance-Rejection
نویسندگان
چکیده
منابع مشابه
Monte Carlo Integration With Acceptance-Rejection
This article considers Monte Carlo integration under rejection sampling or Metropolis-Hastings sampling. Each algorithm involves accepting or rejecting observations from proposal distributions other than a target distribution. While taking a likelihood approach, we basically treat the sampling scheme as a random design, and define a stratified estimator of the baseline measure. We establish tha...
متن کاملMonte Carlo integration with subtraction
This paper investigates a class of algorithms for numerical integration of a function in d dimensions over a compact domain by Monte Carlo methods. We construct a histogram approximation to the function using a partition of the integration domain into a set of bins specified by some parameters. We then consider two adaptations; the first is to subtract the histogram approximation, whose integra...
متن کاملDelayed rejection variational Monte Carlo.
An acceleration algorithm to address the problem of multiple time scales in variational Monte Carlo simulations is presented. After a first attempted move has been rejected, the delayed rejection algorithm attempts a second move with a smaller time step, so that even moves of the core electrons can be accepted. Results on Be and Ne atoms as test cases are presented. Correlation time and both av...
متن کاملMonte Carlo integration with Markov chain
There are two conceptually distinct tasks in Markov chain Monte Carlo (MCMC): a sampler is designed for simulating a Markov chain and then an estimator is constructed on the Markov chain for computing integrals and expectations. In this article, we aim to address the second task by extending the likelihood approach of Kong et al. for Monte Carlo integration. We consider a general Markov chain s...
متن کاملMonte-Carlo and Quasi-Monte-Carlo Methods for Numerical Integration
We consider the problem of numerical integration in dimension s, with eventually large s; the usual rules need a very huge number of nodes with increasing dimension to obtain some accuracy, say an error bound less than 10−2; this phenomenon is called ”the curse of dimensionality”; to overcome it, two kind of methods have been developped: the so-called Monte-Carlo and Quasi-Monte-Carlo methods. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Graphical Statistics
سال: 2006
ISSN: 1061-8600,1537-2715
DOI: 10.1198/106186006x142681